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Abstract. The statistical distances between countries, calculated for various moving average time windows,
are mapped into the ultrametric subdominant space as in classical Minimal Spanning Tree methods. The
Moving Average Minimal Length Path (MAMLP) algorithm allows a decoupling of fluctuations with
respect to the mass center of the system from the movement of the mass center itself. A Hamiltonian
representation given by a factor graph is used and plays the role of cost function. The present analysis
pertains to 11 macroeconomic (ME) indicators, namely the GDP (x1), Final Consumption Expenditure
(x2), Gross Capital Formation (x3), Net Exports (x4), Consumer Price Index (y1), Rates of Interest of the
Central Banks (y2), Labour Force (z1), Unemployment (z2), GDP/hour worked (z3), GDP/capita (w1) and
Gini coefficient (w2). The target group of countries is composed of 15 EU countries, data taken between
1995 and 2004. By two different methods (the Bipartite Factor Graph Analysis and the Correlation Matrix
Eigensystem Analysis) it is found that the strongly correlated countries with respect to the macroeconomic
indicators fluctuations can be partitioned into stable clusters.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.75.Fb Struc-
tures and organization in complex systems – 05.45.Tp Time series analysis

1 Introduction

Modelling the dependences between the macroeconomic
(ME) variables has to take into account circumstances
that differ substantially from those encountered in the nat-
ural sciences. First, experimentation is usually not feasible
and is replaced by survey research, implying that the ex-
planatory variables cannot be manipulated and fixed by
the researcher. Second, the number of possible explanatory
variables is often quite large, unlike the small number of
carefully chosen treatment variables frequently found in
the natural sciences. Third, the ME time series are short
and noisy. Most data have a yearly frequency. When so-
cial time series have been produced for a very long period,
there is usually strong evidence against stationarity.

Some macroeconomic (ME) indicators are monthly
and/or quarterly registered, increasing in this way the
number of available data points, but some additional
noise is naturally enclosed in the time series so generated
(seasonal fluctuations, external and internal short range
shocks, etc.). This seems to be a solid argument for the
fact that the main data sources, at least the ones freely
available on the web, tend only to keep the annual aver-
ages/rates of growth of the ME indicators.

a e-mail: mgligor@ulg.ac.be
b e-mail: Marcel.Ausloos@ulg.ac.be

Let us consider, for example, a time interval of one
hundred years, which is mapped onto a graphical plot of
100 data points. From the statistical physics viewpoint,
100 is a quite small number of data points, surely too small
for speaking about the so called thermodynamic limit. On
the other hand, from a socio-economic point of view, we
can justifiably wonder if a growth, say, of 2% of any ME
indicator has at the present time the same meaning as
it had one century ago. One must take into account that
during that time, the social, politic and economic environ-
ment was drastically changed. Moreover the methodology
of data collecting and processing is today different from
what it was two generations ago. Indeed, the economic
world is created by people and is substantially changing
from a generation to another one (sometimes also during
one and the same generation). Thus, this way of statistical
data aggregation turns to be controversial.

Several papers [1,2] investigated the statistical pat-
terns in GDP annual rates of growth by aggregating (in
a “horizontal” way) the data from all countries for which
statistical data were reported. Even if all data are sup-
posed to be reliable, and even if the relative rates of growth
are investigated (to diminish the actual large difference in-
fluences), this way of aggregation, as well as the previous
one, supposes a priori a certain degree of homogeneity
across countries. A certain GDP rate of growth in an un-
derdeveloped country is certainly based on factors that
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differ substantially from the ones that generate the same
rate of growth in a developed country. Both theoretical
and empirical investigations [3,4] reported the evidence
of the country partitioning in clusters after their common
patterns of evolution. For such subsystems only, the data
might be meaningfully aggregated. In the present paper
we demonstrate the clustering emergence in the relatively
stable and homogeneous system composed of the 15 EU
countries for data taken between 1994 and 2004, start-
ing from the annual rates of growth of 11 ME indicators,
namely the GDP (x1), Final Consumption Expenditure
(x2), Gross Capital Formation (x3), Net Exports (x4),
Consumer Price Index (y1), Rates of Interest of the Cen-
tral Banks (y2), Labour Force (z1), Unemployment (z2),
GDP/hour worked (z3), GDP/capita (w1) and Gini coef-
ficient (w2).

One has to stress here that the problem of studying the
patterns of growth across countries is actually a subject of
great attention to economists [4,5]. An important reason
for the increasing interest in this problem is that persis-
tent disparities in aggregate growth rates across countries
have, over time, led to large differences in welfare. On the
other hand, the intellectual payoffs are high: various sta-
tistical tools might be considerably enriched and extended
by applying them to the non-stationary, short and noisy
macroeconomic time series.

In the present paper we focus on two recent lines of
research, of growing interest in physics, which can bring
important contributions to ME time series analysis. On
one hand, the recent developments in nonequilibrium net-
works [6]; on the other hand, the random matrix the-
ory (RMT), initially developed in nuclear physics, also
successfully used in the study of canonical correlations
between stock changes and portfolio optimization prob-
lem [7]. The way in which these methods are adapted to
the macroeconomic time series analysis is described in the
next section.

The Minimal Spanning Tree (MST) is one of the most
usual methods in cluster analysis, and has been largely
used so far both by physicists [8] and economists [4].
Nonetheless, both sides [4,7] noted some lack of univocity
due to choosing the MST root. Moreover, the MST struc-
ture proves to be not stable when a constant size time
window is moved over the considered time span. The so-
lution briefly presented in Section 3, namely the Moving
Average Minimal Length Path (MAMLP) method comes
as a development of some previous methods where some
arbitrariness in the root of the tree was underlined consid-
ering that an a priori more common root, like the sum of
the data, called the “All” country, from which to let the
tree grow was permitting a better comparison [9].

The target group of countries is composed of 15 EU
countries, data taken between 1994 and 2004. The main
sources used for all the above indicators annual rates is the
World Bank database [10] and the OECD database [11].
We abbreviate the countries according to the Roots Web
Surname List (RSL) which uses 3 letters standardized ab-
breviations to designate countries and other regional loca-
tions (http://helpdesk.rootsweb.com/codes/). Inside

the tables, for spacing reasons we use the countries two
letters abbreviation (http://www.iso.org).

The remainder of the paper is organized as follows: in
Section 2 the theoretical and methodological tools from
the network analysis and matrix theory which we try to
adapt to the considered time series are briefly described.
The results are largely presented and discussed in Sec-
tion 3. Some concluding remarks are done in Section 4.

2 Theoretical and methodological framework

As mentioned in Section 1, MST cannot be built in a
unique way, whence this becomes a problem when we try
to construct a cluster hierarchy for each position of a mov-
ing time window. The hierarchical structure proved to be
not robust against fluctuations induced by a moving time
window. In the MAMLP method described here below we
propose to construct the hierarchy starting from a virtual
’average’ agent. The method is developed in the following
steps:

(i) an ‘AVERAGE’ agent (AV) is virtually included into
the system; the statistical distance matrix is con-
structed, having the elements: dij = [2(1 − Cij)]1/2,
where Cij is the correlation coefficient between the
ME time series corresponding to the i − j pair of
countries in the considered time interval, T . The ma-
trix elements are thereafter set into increasing order
(i.e. the decreasing order of correlations);

(ii) the hierarchy is constructed, connecting each agent
by its minimal length path (MLP) to AV. Its minimal
distance to AV, d̂i(t), is associated to each agent;

(iii) the procedure is repeated by moving a given and con-
stant time window (in this case a T = 5 years time
window size) over the investigated time span (in the
present analysis: 1994–2004). The agents are sorted
through their movement inside the hierarchy. There-
fore, a new correlation matrix between country dis-
tances to their own mean is constructed. The matrix
elements are defined as:

Ĉi,j(t) =
〈d̂i(t)d̂j(t)〉 − 〈d̂i(t)〉〈d̂j(t)〉√

〈(d̂i(t))2 − 〈d̂i(t)〉2〉〈(d̂j(t))2 − 〈d̂j(t)〉2〉
(1)

where d̂i(t) is the i-country minimal length path (MPL)
distance to the AVERAGE. For simplicity, the explicit de-
pendencies on the time window size T are not included in
equation (1). The angular brackets in equation (1) repre-
sent averages over the different distances (country pairs)
obtained as the time window is moved.

As we shall show in Section 3.3, for five of the analysed
indicators, namely for x1 ≡ GDP, x2 ≡ Consumption,
x3 ≡ Capital Formation, w1 ≡ GDP/capita and y2 ≡
Interest Rates, there is some sort of countries collective
movement, while for the other six ME indicators there is
no such tendency. However, the average rate of growth
can always be defined by simply arithmetical averaging
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the individual rates of EU-15 countries (the average be-
haviour is often analysed in the economics papers, e.g. in
the OECD reports [11]). The algorithm above described
is nothing else but the classical Minimal Spanning Tree
on the condition that the root of the tree is the “average”
agent instead of one of the strongest correlated agents. The
“average country” plays the role of the mass centre of the
system, with respect to which the movements of the other
(“real”) countries are analysed.

Two points must be also stressed here. Firstly the
present study pertains to the fluctuations of the ME in-
dicators, not to their actual values (the rough data used
are the annual rates of growth). If two countries display
a correlated movement with respect to the average (the
both going near or the both going far from the average),
one may suspect some kind of economic interaction be-
tween them. In this sense, Ĉij can be seen as a measure of
one country sensitivity to the economic fluctuations of an-
other, rather than a direct correlation or anti-correlation
derived from the rough ME time series.

Secondly, if one of the time series is constant in the in-
vestigated time window, then Ĉij becomes undetermined,
as a fraction of zero. This problem sometimes arises when
the (Pearson’s) correlation coefficient is calculated in a
finite-size time window. This result, rather than express-
ing a mathematical limit, simply shows that the correla-
tion coefficient cannot be defined if one of the two time
series has no variability. Note that this particular situ-
ation is more likely to arise when the classical MST is
applied than one applies the MAMPL algorithm. Indeed,
while two countries can keep their statistical distance un-
changed, it is very unlikely one of them to maintain itself
at a constant distance to the average (as long as the av-
erage is depending on all the other countries idiosyncratic
behaviour).

Let us recall that for systems with discrete degrees of
freedom, denoted by s, the statistical mechanical models
are generally defined through the Hamiltonian H = H(s),
which is typically a sum of terms, each involving a small
number of variables. A useful representation is given by
the factor graph [12]. A factor graph is a bipartite graph
made of variable nodes i, j, . . . one for each variable, and
function nodes a, b, . . . one for each term of the Hamilto-
nian. In the present approach the variable nodes are the
macroeconomic indicators and the function nodes are the
countries. An edge joins a variable node i and a function
node a if and only if i ∈ a, i.e., the variable si appears
in Ha - the term of the Hamiltonian associated to a. The
Hamiltonian can then be written as:

H =
∑

a

Ha(sa), with sa = {si, i ∈ a}. (2)

In combinatorial optimization problems [12], the
Hamiltonian plays the role of a cost function. In the
low temperature limit T → ∞, one is interested by
only minimal energy states (ground states) having a
non-vanishing probability.

Usually, a cluster k is defined as a subset of the factor
graph such that if a function node belongs to k, then all

the variable nodes i ∈ a also belong to k (while the con-
verse needs not to be true, otherwise the only legitimate
clusters would be the connected components of the factor
graph). Here, this condition will be relaxed by partition-
ing the function nodes after the criterion if it is connected
or not to a certain variable node.

Once the correlation matrix is constructed, it is nat-
ural to ask for the interpretation of its eigenvalues and
eigenvectors. Note that since the matrix is symmetric, the
eigenvalues are all real numbers. We will call va the nor-
malized eigenvector corresponding to eigenvalue λa, with
a = 1, 2, . . . , M . The vector va is the list of the weights
va,i in this linear combination of the different countries.
The variance corresponding to such a combination is thus:

σ2
a =

〈(
M∑
i=1

va,id̂i

)2〉
=

M∑
i,j=1

va,iva,jĈi,j ≡ va · Ĉva.

(3)
Furthermore, using the fact that different eigenvectors are
orthogonal, we obtain a set of uncorrelated random fluc-
tuations ea, which are the elements of the system con-
structed from the weights va,i:

ea =
M∑
i=1

va,id̂i, where 〈eaeb〉 = λaδa,b. (4)

Conversely, one can think of the initial distances as a linear
combination of the uncorrelated factors Ea:

d̂i =
M∑

a=1

va,iea. (5)

In this decomposition, usually called “the principal com-
ponent analysis”, the correlated fluctuations of a set of
random variables are decomposed in terms of the fluc-
tuations of underlying uncorrelated factors. In the case of
the country clustering, the principal components Ea could
have an economic interpretation in terms of the macroe-
conomic indicators.

Since, as generally accepted [7,13], the largest eigen-
vectors are the ones carrying the useful information, one
can try to define clusters on the basis of the structure
of these eigenvectors. Often (but not always), the largest
one, v1, has comparable and of the same sign components
on all countries, and defines the largest cluster, containing
all countries. The second one, v2, which by construction
has to be orthogonal to v1, may have some of its compo-
nents positive, and the others negative. This means that a
probable move of the countries around the average (global)
fluctuations occurs when some countries over-perform the
average, and others under-perform it. Therefore, the sign
of the components of v2 can be used to group the countries
in two families. Each family can then be divided further,
using the relative signs of v3, v4, etc.
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Table 1. MPL distances to AVERAGE. The moving time window size is 5 years for data taken from 1994 to 2004.

AU BE DE DK ES FI FR UK GR IE IT LU NL PT SE
94–98 0.67 0.86 0.86 0.86 0.40 0.40 0.67 0.86 0.40 0.86 0.86 0.40 0.40 0.86 0.86
95–99 0.60 0.65 0.52 0.71 0.21 0.77 0.45 0.77 0.37 0.65 0.90 0.37 0.23 0.83 0.52
96–00 0.58 0.32 0.46 0.61 0.34 0.81 0.46 0.32 0.32 0.53 0.32 0.20 0.60 0.60 0.46
97–01 0.48 0.30 0.48 0.30 0.28 0.42 0.48 0.44 0.68 0.38 0.68 0.14 0.28 0.28 0.48
98–02 0.43 0.26 0.19 0.19 0.21 0.43 0.19 0.19 1.04 0.29 0.44 0.12 0.21 0.21 0.29
99–03 0.25 0.23 0.19 0.19 0.29 0.26 0.19 0.37 1.15 0.26 0.37 0.23 0.19 0.19 0.28
00–04 0.27 0.27 0.17 0.26 0.28 0.27 0.21 0.27 0.53 0.50 0.28 0.27 0.21 0.21 0.27

Table 2. The correlation matrix of EU-15 country movements inside the hierarchy. Indicator: GDP. The moving time window
size is 5 years for data taken from 1994 to 2004.

AU BE DE DK ES FI FR UK GR IE IT LU NL PT SE
AU 1 0.77 0.88 0.88 0.33 0.69 0.88 0.69 −0.69 0.75 0.71 0.42 0.61 0.89 0.85
BE 1 0.88 0.90 0.41 0.27 0.80 0.94 −0.59 0.92 0.83 0.85 0.23 0.90 0.91
DE 1 0.90 0.61 0.35 0.98 0.86 −0.65 0.85 0.78 0.61 0.52 0.86 0.99
DK 1 0.50 0.58 0.87 0.84 −0.80 0.93 0.67 0.77 0.58 0.99 0.88
ES 1 −0.10 0.61 0.34 −0.38 0.55 0.05 0.36 0.66 0.37 0.64
FI 1 0.42 0.25 −0.62 0.34 0.27 0.14 0.60 0.64 0.26
FR 1 0.79 −0.71 0.81 0.73 0.52 0.60 0.82 0.95
UK 1 −0.52 0.82 0.90 0.85 0.12 0.86 0.86
GR 1 −0.82 −0.38 −0.56 −0.62 −0.76 −0.60
IE 1 0.63 0.85 0.43 0.89 0.87
IT 1 0.59 −0.05 0.73 0.77
LU 1 0.06 0.77 0.65
NL 1 0.50 0.47
PT 1 0.84
SE 1

3 Results

3.1 The statistics of the correlation coefficients

In order to exemplify the MAMPL method, the corre-
sponding steps for x1 = GDP are explicitly shown below.
Firstly, the virtual ’AVERAGE’ country is introduced in
the system. The statistical distances corresponding to the
fixed 5 years moving time window are set in increasing
order and the minimal length path (MPL) connections to
the AVERAGE are established for each country in every
time interval (Tab. 1).

The resulting hierarchy is found to be changing from
a time interval to another. Therefore, corresponding cor-
relation matrix is built, this time for the country move-
ments inside the hierarchy (Tab. 2). The above procedure
is repeated for each macroeconomic indicator. Thus, the
MAMPL method leads us to a set of M = 11 correlation
matrices, having size N ×N , where N = 15 is the number
of countries under consideration.

Firstly, we analyse the whole set of correlation coef-
ficients. A correlation coefficient Ĉi,j will be taken into
account as representing a strong connection if and only
if |Ĉi,j | > Cthr, where Cthr is a certain a priori chosen
threshold value. For small values of the Cthr, all 15 coun-
tries have at least one strong connection, i.e. the graph
is fully connected. Increasing the Cthr, the number of the
connections decreases. In Figure 1 the relative number of
links (the ratio between the number of actual links and the
number of all possible links) is plotted versus the threshold
value. One can observe that the data is well fitted by a low

y = 0.04x - 0.06
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y = -3*10-4x3 + 72*10-4x2 - 0.04x + 1.06
R2 = 0.996

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.25 0.50 0.75 1.00

|C|

Cumulative distribution of |C| Relative nr of links for the threshold |C|

Fig. 1. The cumulative distribution of the correlation co-
efficients and the relative number of connections versus the
|Ĉi,j | ≡ |C| (respectively Cthr ≡ |C|).

order polynomial. In Figure 1 the cumulative distribution
of the correlation coefficients is also plotted (now, the val-
ues are the cumulative frequencies and the abscissas are
the corresponding correlation coefficients). For compari-
son, the cumulative uniform distribution is also plotted.
The high value of the square of the Pearson product mo-
ment correlation coefficient, R2 > 0.99, indicates a good
fit of both distributions.
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Nevertheless, performing the χ2 test over the whole set
of correlation coefficients we must reject the null hypoth-
esis of the fitting |C| distribution by the uniform in the
confidence interval of 99%. Investigating by sight the data
set one remarks an anomalous large number of correlation
coefficients (N20 = 100) in the range 0.95–1.00, while the
mean of the distribution is 57.75 and the standard devia-
tion is σ = 7.45. According to Chebyshev’s theorem [14],
an interval of ±4 standard deviations ensures that at least
94% of the data (of an arbitrary distribution) falls inside
this interval. Thus, the last point of the distribution can
be treated as an outlier, and, performing the χ2 test for
the remainder points we can accept the hypothesis of the
same distribution in a confidence interval of over 75%. We
must note here that the same conclusion is supported by
t-Student’s test in a confidence interval of 100%, the two
distributions having exactly the same mean. Joining to-
gether the results of the statistical tests, we can conclude
that the correlation coefficients distribution is a uniform
distribution.

3.2 The bipartite factor graph analysis

As it has been already shown, the factor graph structure is
strongly dependent on the threshold value Cthr. In order
to establish the most appropriate Cthr, a two tailed t-test
of statistical significance is performed over the correlation
matrix elements [14]. The null hypothesis (a correlation
coefficient of zero) assumes that there is no linear rela-
tionship between the two variable sets. In order to test
the significance of the correlation coefficients we use the
test statistic:

t = r

√
n − 2
1 − r2

(6)

where r ≡ Ĉi,j and n = 2 is the number of degrees of
freedom. The correlation coefficient is considered to be
statistically significant if the computed t value is greater
than the critical value tC of a t-Student’s distribution with
a level of significance of α. From equation (6) one derives:

rC =
tC√

t2C + n − 2
. (7)

Taking n = 7 (the number of statistical distances used for
computing each correlation coefficient, from the t-Student
distribution tables we find the critical value tC = 3.365
for a reasonable level of significance α = 0.02 (or, equiv-
alently, 98% confidence interval). From equation (7) we
get rC ≡ Cthr = 0.83 i.e. the null hypothesis can only be
rejected for the correlation coefficients greater or at least
equal to this value. The significant correlation coefficients
are emphasized in bold in Table 2.

It is interesting to remark that the two plots from Fig-
ure 1 do intersect at the abscissa 0.83 which is equal to
the rC above found. The intersection point seems to corre-
spond to an optimal choosing of Cthr, under the constrain
of the competition between link removing and the remain-
der correlations to be taken into account.
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Fig. 2. The eigenvalue spectrum of the correlation matri-
ces between EU-15 country movements with respect to AV-
ERAGE, for each ME indicator (inset). RM: the eigenvalue
spectrum of the random matrix.

One can easily see that not all 15 countries (function
nodes) are connected through the variable node x1 (GDP
fluctuations), but only 11 of them. Their contributions to
the Hamiltonian include the variable x1.

The above procedure is repeated for each ME variable
and leads us to the Hamiltonian (or cost function) having
the form: H = AUT (x1, x2, x3, x4, y2, z1, z2, z3, w1, w2) +
BEL(x1, x2, x3, y1, y2, z1, z3, w1, w2) +
DEU(x1, x2, x4, y1, y2, z1, z2, z3, w1, w2) +
DNK(x1, x3, x4, y2, z1, z2, w1, w2) +
ESP (x2, x3, y2, z1, z2, w1, w2) +
FIN(x3, x4, y1, y2, z2, z3, w1, w2) +
FRA(x1, x3, x4, y1, y2, z2, z3, w1, w2) +
GBR(x1, x2, x3, x4, y1, y2, z1, z2, z3, w1, w2) +
GRC(x4, y1, z2, w1, w2) +
IRL(x1, x2, x3, x4, y1, y2, z2, w1, w2) +
ITA(x1, x4, y1, y2, z1, z2, w1, w2) +
LUX(x1, x4, y1, y2, z1, z2, z3, w1, w2) +
NLD(x2, x4, y2, z2, w1, w2) +
PRT (x1, x2, x3, x4, y1, y2, z1, z2, z3, w1, w2) +
SWE(x1, x2, x3, x4, y1, y2, z2, w1, w2).

3.3 The correlation matrix analysis

From the result of the bipartite graph analysis, some coun-
tries binary partition in respect to each ME variable can
be already seen: a country is connected or not to the re-
spective variable node. Nonetheless, a complete solution
to this problem can only be obtained by analyzing the
correlation matrix eigensystems. A parallel to similar re-
sults from the stock market investigation [7,13] can be
also drawn.
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Table 3. The first eigenvector components.

GDP CONS CAPF NEXP CPI INTR LABF UNEMP GDPH GDPC GINI
AU −0.276 −0.300 0.373 −0.328 −0.109 −0.274 0.239 0.305 −0.294 −0.289 −0.261
BE −0.287 −0.325 0.357 0.189 0.003 −0.271 0.308 0.229 −0.351 −0.259 −0.371
DE −0.296 −0.304 0.257 −0.371 −0.334 −0.274 −0.343 0.299 −0.284 −0.261 −0.122
DK −0.303 −0.097 0.281 0.111 −0.003 −0.276 −0.293 −0.250 −0.161 −0.287 −0.131
ES −0.167 −0.325 0.356 −0.171 −0.260 −0.276 0.331 −0.271 0.244 −0.275 0.360
FI −0.155 −0.159 0.277 0.077 0.342 −0.268 −0.199 −0.322 −0.343 −0.213 −0.047
FR −0.288 −0.188 0.356 0.282 0.368 −0.272 0.100 0.372 −0.320 −0.229 0.317
UK −0.274 −0.321 0.088 0.244 0.003 −0.234 0.328 −0.322 −0.352 −0.250 −0.310
GR −0.239 −0.103 0.132 0.048 −0.266 −0.189 0.152 0.230 0.130 0.257 0.360
IE −0.290 −0.325 0.274 0.351 0.300 −0.276 −0.163 −0.322 0.068 −0.282 0.188
IT −0.236 0.001 −0.053 −0.354 −0.363 −0.276 −0.308 0.105 0.045 −0.222 0.216
LU −0.231 0.026 −0.140 0.077 −0.266 −0.201 0.299 −0.140 −0.210 −0.251 −0.107
NL −0.165 −0.325 0.059 0.056 0.110 −0.274 0.151 −0.194 −0.207 −0.272 −0.345
PT −0.297 −0.325 −0.030 −0.387 −0.341 −0.276 −0.277 −0.029 −0.320 −0.254 0.262
SE −0.293 −0.325 0.361 0.351 −0.254 −0.208 0.209 0.239 0.258 −0.257 −0.154

Table 4. The second eigenvector components.

GDP CONS CAPF NEXP CPI INTR LABF UNEMP GDPH GDPC GINI
AU 0.014 −0.155 0.043 −0.030 −0.285 −0.079 0.393 0.268 −0.204 −0.078 0.121
BE −0.236 −0.042 −0.124 0.279 −0.179 −0.074 −0.026 −0.060 −0.086 0.224 0.051
DE 0.013 −0.141 0.204 −0.110 −0.162 −0.046 0.009 0.273 0.174 0.295 0.339
DK 0.052 0.335 −0.315 −0.433 0.387 0.003 −0.238 0.335 0.276 −0.099 −0.397
ES 0.247 −0.033 0.146 −0.094 −0.234 −0.032 −0.040 −0.197 −0.192 −0.232 −0.083
FI 0.404 0.427 −0.306 −0.423 −0.164 −0.114 0.359 −0.054 0.006 −0.424 −0.385
FR 0.079 0.142 0.146 0.012 −0.149 −0.086 −0.256 −0.012 0.194 0.268 0.190
UK −0.309 0.039 −0.420 −0.191 0.085 0.314 −0.110 −0.061 −0.011 0.092 0.103
GR 0.238 0.332 0.266 −0.356 0.241 −0.605 −0.399 −0.358 0.340 0.283 −0.083
IE −0.055 −0.042 −0.075 0.156 −0.343 −0.020 −0.385 −0.196 0.429 −0.108 0.295
IT −0.323 −0.456 −0.417 0.040 0.051 −0.032 −0.172 0.000 0.306 0.402 0.340
LU −0.306 0.560 −0.090 −0.423 −0.309 0.471 −0.113 0.424 0.392 0.199 0.300
NL 0.576 −0.033 −0.264 −0.372 −0.448 −0.079 −0.355 0.381 −0.352 −0.186 0.109
PT 0.007 −0.033 −0.438 0.052 −0.094 −0.032 0.129 0.443 0.126 −0.323 −0.241
SE −0.062 −0.033 0.094 0.156 −0.342 0.519 0.296 0.061 0.286 0.318 −0.372

The eigenvalue spectrum for the empirical correlation
matrices is plotted in Figure 2 for all the ME variables.
The results are compared with those of a random uncor-
related matrix (RM), having the same size (15× 15), con-
structed by generating random numbers.

In stock market analysis the largest eigenvalue, often
called “market effect”, is supposed to describe the collec-
tive movement of stock prices, because the corresponding
eigenvector components have the same sign and approx-
imately the same size. Looking at the first and second
eigenvector components (Tabs. 3 and 4) one can easily
see that, for the ME correlation matrices, the above in-
terpretation is only partially valid, for x1 ≡ GDP, x2 ≡
Consumption, x3 ≡ Capital Formation, w1 ≡ GDP/capita
and y2 ≡ Interest Rates. The fluctuations of these indi-
cators seem to reflect a global similarity, as a result of
the so-called “globalization trend”. The same result was
also found in [15] for the first four indicators, by another
method, namely measuring the mean statistical distances
between countries. The fifth indicator analyzed in [15] was
the Net Exports, for which no occurrence of this effect was
reported – in perfect agreement with the actual results.

3.4 Clustering method and results

The clustering scheme can be next elaborated as follows:
firstly, the so-called first order clusters are selected us-
ing the bipartite factor graph, i.e. meaning the clusters
of countries having at least one connection to the respec-
tive variable node. The countries are further partitioned
after the sign and the magnitude of eigenvector compo-
nents, using Table 4 (for x1, x2, x3, y2 and w1) and Ta-
ble 3 (for the others). For several indicators (x1, x2 and
z3) we also selected some groups that can be called second-
order clusters, including some countries which are not tied
in the factor graph, but have important contributions to
the eigenvector structure i.e. large size components. These
clusters are written into parentheses in Table 5.

Looking at the development indicators (x1, x2, x3, x4

and w1), we find approximately the same clustering
scheme as reported in [15] but more extended. There
is some agreement with the results reported by Chen
in [5] regarding the co-movement between real activ-
ity and prices during the period 1992–1997 i.e. the
partition of FRA-DEU and ITA into different clusters
with respect to the Consumer Price Index fluctuations.



M. Gligor and M. Ausloos: Cluster structure of EU-15 countries derived from the correlation matrix analysis... 145

Table 5. The EU-15 clustering. The second column displays the eigenvector whose components are used for building the
classification scheme. The groups into parentheses are the second-order clusters.

INDICATOR EVC CLUSTERS
GDP v2 BEL-GBR-ITA-LUX

AUT-DEU-DNK-FRA-PRT
(ESP-FIN-NLD)

Final Consumption v2 AUT-DEU
Expenditure (DNK-FIN-FRA-GRC-LUX)
Gross Capital v2 BEL-DNK-FIN-GBR-PRT

Formation ESP-FRA
Net Exports v1 AUT-DEU-ITA-PRT

DNK-FRA-GBR-IRL-SWE
Consumer Price v1 DEU-ITA-GRC-LUX

Index FIN-FRA-IRL
Rate of Interest v2 GBR-LUX-SWE

All the others, except for GRC
Labour Force v1 AUT-BEL-ESP-GBR-LUX

DEU-DNK-ITA-PRT
Unemployment v1 AUT-DEU-FRA-GRC-ITA-SWE

DNK-ESP-FIN-GBR-IRL-LUX-NLD
GDP per hour v1 DEU-FRA-LUX-PRT

worked (ESP-GRC-SWE)
GDP per capita v2 BEL-DEU-FRA-GRC-ITA-LUX-SWE

ESP-FIN-IRL-NLD-PRT
Gini coefficient v1 AUT-BEL-DEU-DNK-GBR-LUX-NLD-SWE

ESP-FRA-GRC-IRL-ITA-PRT

Moreover there is agreement with the MST constructed
in [4] for 1996 i.e. the strong connections BEL-DEU-
FRA-LUX, IRE-FIN and ESP-PRT with respect to the
GDP/capita.

4 Concluding remarks

Here above we have shown that short and noisy macroeco-
nomic time series can be efficiently investigated by mov-
ing a constant size time window with a constant step
over the time span of interest. The statistical distances
between countries, which are calculated using the lin-
ear correlations between the datasets for each time in-
terval, can be used for computing the ultrametrical dis-
tance from each country to a virtual introduced one,
called “Average”. This method, called Moving-Average-
Minimal-Length-Path, results in a new set of correlation
matrices between country distances to their own mean.
The new correlation coefficients describe as well as possi-
ble the cross-country similarities between the macroeco-
nomic indicator fluctuations around the average common
trend.

The distribution of the absolute values of the correla-
tion coefficients is the uniform distribution. This can be
an effect due to the relative small number of data used
for computing them (see Tab. 1), but can be also seen
as reflecting the diversity resulted from the large number
of particular factors underling the time evolution of each
ME indicator. As well as in the biological systems, the
existence of some common patterns does not exclude the
idiosyncratic diversity.

The Bipartite Factor Graph connects in the simplest
possible way all the countries by means of corresponding
variable nodes assimilated here to the ME indicators. In
spite of its simplicity, the method requires an appropriate
choosing of the threshold value for the correlation coeffi-
cients. One way of evaluating the threshold value can be
the t-Student’s test of statistical significance, as it has
been done in the previous section. We have found the
threshold value near 0.83, in a confidence interval of 98%
of the correlation coefficients statistical significance.

The Bipartite Factor Graph leads to a clustering
scheme in which all the countries are involved (a country
can only be tied or not tied to the respective variable).
For a reliable clustering scheme, more investigation is re-
quired, particularly concerning the tied countries. This in-
vestigation was performed in the previous section by an-
alyzing the correlation matrix eigensystems.

As compared with the similar investigation of stock
prices clustering, there are some similarities, but also im-
portant differences. The Random Matrix Theory could
only be partially used here, except for those results valid
in the limit of infinite matrices: the finite size effects are
much stronger here than in the stock market they are.
For finding the so-called noise band [7], we had to con-
struct the N × N (N = 15) random matrix having all its
rows and columns uncorrelated. Its eigenvalue spectrum
was plotted in Figure 2.

The first two eigenvalues (the largest) are far outside
the noise band, thus the so called chance or noise correla-
tion hypothesis can be rejected. Unlike the result obtained
for stocks, here the largest eigenvalues does not reflect al-
ways a collective mode of the system. The few indicators
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for which this propriety holds, are the ones more sensitive
to the globalization phenomena.

Finally, as regards the clustering structure, some over-
lapping with similar results reported in the economic lit-
erature was found. However, the clusters composition is
most likely a variable from a time span to another. What
is important is the existence of the clusters themselves, as
this hierarchical structure emerged in a period in which
the globalization tendencies were strong and the Euro-
pean common policy was generally oriented to extension
and cohesion. In spite of all convergent economic policies,
the emergence of the clustering structure seems to be in-
herent to EU-15 system, as well as it is inherent, perhaps,
to any human community.
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